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Nervous systems must encode information about the identity of
expected outcomes to make adaptive decisions. However, the
neural mechanisms underlying identity-specific value signaling
remain poorly understood. By manipulating the value and identity
of appetizing food odors in a pattern-based imaging paradigm of
human classical conditioning, we were able to identify dissociable
predictive representations of identity-specific reward in orbito-
frontal cortex (OFC) and identity-general reward in ventromedial
prefrontal cortex (vmPFC). Reward-related functional coupling
between OFC and olfactory (piriform) cortex and between vmPFC
and amygdala revealed parallel pathways that support identity-
specific and -general predictive signaling. The demonstration of
identity-specific value representations in OFC highlights a role for
this region in model-based behavior and reveals mechanisms by
which appetitive behavior can go awry.

reward value | associative learning | ventromedial prefrontal cortex |
olfaction | multivoxel pattern analysis

Predictive representations of future outcomes are critical for
guiding adaptive behavior. To choose different types of re-

wards, such as food, shelter, and mates, it is essential that pre-
dictive signals contain specific information about the identity of
those outcomes. Food rewards differ dramatically in their nu-
tritional composition, and identity-specific cues allow differential
foraging depending on current needs of the organism. The ab-
sence of precise mappings between predictive reward signals and
their intended outcomes would have devastating effects on food-
based decisions.
Despite the ecological relevance of outcome-specific pre-

dictive coding, which can be observed even in Drosophila (1),
most research in human and nonhuman primates has focused on
“common currency” signals of economic values in the orbito-
frontal cortex (OFC) (2, 3) and ventromedial prefrontal cortex
(vmPFC) (4–8). These signals, which by definition are inde-
pendent of the specific nature of the reward, can be used to
compare and choose between alternative outcomes, but are un-
able to inform expectations about the specific identity of the
outcome. For this, identity-specific representations that con-
jointly represent information about both affective value (how
good is it?) and outcome identity (what is it?) are necessary.
Recent data suggest that the OFC is involved in signaling in-
formation about specific outcomes (9–14). For instance, many
OFC neurons signal both the value and the identity of the pre-
dicted outcome (12), and OFC lesions diminish the effects of
outcome identity (but not general affective value) on condi-
tioned behavior (13).
Recent imaging work has also begun to address how the hu-

man brain encodes predictive information about rewarding
outcomes. One study (9) used a functional magnetic resonance
imaging (fMRI) adaptation paradigm to provide evidence for
identity-based codes for reward in the OFC. Another investi-
gation (4) used fMRI data from a willingness to pay auction com-
bined with decoding techniques to reveal category-dependent and
-independent value codes in vmPFC and lateral OFC, respectively.

However, neither of these studies varied value independently of
identity, and they were therefore unable to test for the presence of
identity-specific and -general value codes in the OFC.
Here, we combined an olfactory paradigm of classical condi-

tioning with fMRI pattern-based approaches to test the hy-
pothesis that the human OFC simultaneously encodes both the
value and the identity of an expected rewarding outcome. Crit-
ically, we took advantage of two unique properties of appetizing
food odors to reveal identity-specific value representations. First,
food odors act as potent rewards (15–17), with pleasantness that
can scale with odor intensity (18, 19). Second, different food
odors vary widely in identity (e.g., chocolate cake vs. pizza)
but may still hold similar value. These distinct features enabled
us to systematically manipulate outcome value and identity in-
dependently within the same stimulus space.

Results
Behavior. One day before fMRI scanning, hungry subjects (n =
15) (Fig. 1A) rated the pleasantness of eight food odors, in-
cluding four sweet odors (cupcake, strawberry, dulce de leche,
and watermelon) and four savory odors (pizza, sautéed onions,
potato chips, and barbecue sauce) (Fig. 1B). Based on each
subject’s ratings, we selected one sweet odor and one savory odor
that were matched in rated pleasantness. Next, for each subject,
low- (corresponding to low-value stimuli) and high-intensity
(corresponding to high-value stimuli) versions of these two odors
were created by adjusting stimulus concentrations through an
olfactometer (SI Materials and Methods and SI Discussion). This
procedure resulted in a final selection of four odors, comprising
a fully balanced two-factorial design (two identity levels by two
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Author contributions: J.D.H., J.A.G., P.N.T., and T.K. designed research; J.D.H. and T.K.
performed research; T.K. analyzed data; and J.D.H., J.A.G., P.N.T., and T.K. wrote
the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.
1To whom correspondence should be addressed. Email: thorsten.kahnt@northwestern.
edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1503550112/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1503550112 PNAS | April 21, 2015 | vol. 112 | no. 16 | 5195–5200

N
EU

RO
SC

IE
N
CE

PS
YC

H
O
LO

G
IC
A
L
A
N
D

CO
G
N
IT
IV
E
SC

IE
N
CE

S

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
13

, 2
02

1 

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1503550112/-/DCSupplemental/pnas.201503550SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1503550112/-/DCSupplemental/pnas.201503550SI.pdf?targetid=nameddest=STXT
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1503550112&domain=pdf
mailto:thorsten.kahnt@northwestern.edu
mailto:thorsten.kahnt@northwestern.edu
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1503550112/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1503550112/-/DCSupplemental
www.pnas.org/cgi/doi/10.1073/pnas.1503550112


www.manaraa.com

value levels) (Fig. 1C). These odors were then used as un-
conditioned stimuli (US) in a classical conditioning procedure on
the first day of the experiment, wherein each odor was paired
with two unique visual conditioned stimuli (CS) (Fig. 1D).
Subjects underwent fMRI scanning on the next 2 days of the

study while again receiving the same CS–US pairings (Fig. 1D).
Pleasantness ratings obtained on both scanning days confirmed
the efficacy of our odor intensity manipulation, whereby the two
odor identities (sweet and savory) were matched in value for
both low- and high-intensity levels. A two-way repeated mea-
sures ANOVA (n = 15) revealed a significant main effect of
value (F1,14 = 33.48, P < 0.001) in the absence of a main effect of
identity (F1,14 = 0.36, P = 0.56) or a value by identity interaction
(F1,14 = 0.02, P = 0.91) (Fig. 2A). This profile was also found for
CS pleasantness ratings, indicating that the CS images acquired
predictive value information about their associated odor out-
comes (two-way repeated measures ANOVA, n = 15; main effect
of value: F1,14 = 28.86, P < 0.001; main effect of identity: F1,14 =
0.03, P = 0.86; interaction: F1,14 = 0.001, P = 0.97) (Fig. 2B and
Fig. S1, individual data). A similar effect was observed in the
sniffing responses (sniff amplitude) (Fig. 2 C and D), which
differed as a function of odor value (two-way repeated measures
ANOVA, n = 15; F1,14 = 9.05, P = 0.01) but not identity (F1,14 =
3.60, P = 0.08). Although there were small but significant dif-
ferences between low- and high-value sniffs (percentage change
from low to high: 3.95% and 5.24% for sweet and savory,

respectively), there was no significant interaction (F1,14 = 0.14,
P = 0.71), indicating that any comparisons between sweet and
savory value effects could not be explained by respiratory dif-
ferences per se. Moreover, all fMRI analyses focused on the CS
presentations, which were temporally dissociated from the odor
presentations, and for which no differences in respiration were
observed (two-way repeated measures ANOVA, n = 15; main
effect of value: F1,14 = 0.09, P = 0.76; main effect of identity:
F1,14 = 0.02, P = 0.89; interaction: F1,14 = 0.47, P = 0.50). Nev-
ertheless, to comprehensively control for any potential breathing-
related effects, sniff parameters were included in all fMRI
models (20). Fig. S2 shows additional analyses on behavioral
task performance.

Identity-Specific Value Codes in OFC. The ability to modulate pre-
dictive value while “clamping” predictive identity motivated our
next efforts to isolate CS-evoked fMRI representations of identity-
specific value. We reasoned that if expected value codes contain
identity information, then value-related (high vs. low value) patterns
of fMRI ensemble activity corresponding to the different outcome
identities (sweet vs. savory) should be reliably distinguishable. Using
a multivoxel pattern-based searchlight analysis (21), we first
computed the value-related response patterns during CS pre-
sentation (high minus low value) separately for sweet- and
savory-predictive CS cues (Fig. 3A). In a second step, we used
cross-validated support vector machines (SVMs) to identify re-
gions in which these value-related response patterns—corre-
sponding to different predicted outcome identities—could be
reliably classified (Fig. 3A), the idea being that significant
decoding accuracy would be observed only if the value-related
activity patterns for the two predicted odors are different. We
identified robust codes of identity-specific value in three brain
areas: lateral OFC [x, y, z coordinates = 42, 36, −16; t test, n =
15; t = 5.72, p familywise error rate (pFWE) = 0.022] (Fig. 3B),
anterior cingulate cortex (ACC; 6, 38, 16; t = 5.01, pFWE = 0.038)
(Fig. 3C), and hippocampus (38, −16, −16; t = 4.92, pFWE =
0.020). The cluster in the lateral OFC was located in Brodmann
area 47, roughly corresponding to areas 47/12m and 47/12r in the
classification from ref. 22 and areas 47/12m and 47/12o in the
classification from ref. 23.
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Fig. 1. Experimental design and stimuli. (A, Upper) Hunger ratings and
(A, Lower) time to last meal did not differ across days (one-way ANOVAs:
hunger, F2,28 = 0.34, P = 0.71; time to last meal, F2,28 = 0.97, P = 0.39). Note
that error bars for SEM (n = 15) are smaller than the symbols. (B) Pictorial
representations of the sweet and savory food odor stimuli used in the ex-
periment. (C) Illustration of the two-factorial design of our study, in which
value (low vs. high) and identity (sweet vs. savory) could be independently
manipulated. (D) Subjects learned to associate each of four odor US with two
unique visual CS, resulting in two stimulus sets (counterbalanced across
subjects). (E) On each trial of the fMRI task, one of eight CS images was
presented, and subjects had to predict either the value of the upcoming US
[response options: low (L) and high (H)] or the identity of the upcoming US
[response options in this example: strawberry (SB) and potato chips (PC)].
This prediction was followed by a sniff cue and delivery of odor.
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Fig. 2. Pleasantness ratings and breathing data. (A and B) Pleasantness
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sniff cue. (D) Average peak sniff amplitudes. Error bars are SEMs (n = 15). t test
(n = 15). *P < 0.05; §P = 0.052.
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Although these findings suggest that the brain encodes pre-
dictive values intrinsically linked to specific outcome identities, it
is possible that imperfect balancing of relative value (high vs.
low) between the sweet and savory odors within individual sub-
jects could have led to spurious decoding. For example, if the
sweet-predictive high- vs. low-reward CS was perceived to be
more rewarding than the savory-predictive high- vs. low-reward
CS, then value differences (rather than identity differences
alone) could have influenced the observed classification effects.
To rule out this potential confound, we tested the correlation
between decoding accuracy and a measure of value imbalance,
which compares the difference in value between low- and high-
value levels between the two odors (basically, the difference of
the differences) (SI Materials and Methods). Supporting the no-
tion that decoding was, indeed, based on identity-specific value
patterns, the correlations between value imbalance and decoding
accuracy were nonsignificant in OFC (r = 0.08, P = 0.76) (Fig.
3D), ACC (r = −0.27, P = 0.32), and hippocampus (r = −0.12,
P = 0.66).

Identity-General Value Codes in vmPFC. Although we found evi-
dence for identity-specific value codes in the OFC, it remains
possible that predictive representations of identity-general value
may be encoded elsewhere. We hypothesized that, in this in-
stance, value signals would generalize from one odor identity to
the other. Thus, by training an SVM on activity patterns from CS
images predicting the value of sweet odors (high vs. low value),
we should be able to correctly classify activity patterns from CS
cues predicting the value of savory odors and vice versa (Fig.
4A). Using this approach, we found significant decoding of
general value signals in vmPFC (−8, 38, −10; t test, n = 15; t =
5.19, pFWE = 0.03) (Fig. 4B). Notably, this relatively small cluster
in medial Brodmann area 11 (corresponding to area 10m/10r in
ref. 22 and area 14m in ref. 23) closely colocalizes with co-
ordinates (x = −7, y = 38, z = −11) from previous fMRI studies
of “common value” (8). To confirm that these findings reflect
identity-general value coding, we predicted that greater value
mismatch between sweet and savory odors would weaken classifi-
cation performance. Results show that greater value imbalance
between odor identities was correlated with lower decoding
accuracy in vmPFC (r = −0.68, P = 0.01) (Fig. 4C), providing

additional evidence that this region supports value coding
independent of reward identity.

Independent Pathways for Identity-Specific and -General Values. We
next tested whether identity-specific and -general predictive
value signals are part of a serial network or whether they reflect
independent processes. In the former scenario, general value
would be related to identity-specific signals through functional
connections between vmPFC and OFC. In the latter scenario,
general value would be established independently of identity-
specific representations [for example, through links with the
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have no impact on identity-specific coding (r = 0.08, P = 0.76), suggesting that decoding is not based on residual value differences between the two odor
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role of vmPFC in coding identity-general value.
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amygdala, which is involved in valuation and general affective
processing (24, 25) and is strongly connected to vmPFC (26)]. To
test these hypotheses, we used a psychophysiological interaction
(PPI) model and searched for brain regions in which functional
connectivity with vmPFC was modulated by general predictive
value (high vs. low) collapsed across the two odor identities.
Supporting the concept of an independent pathway, we found
significant value-related connectivity changes between vmPFC
and amygdala (−27, −4, −17; t test, n = 15; t = 5.77, pFWE =
0.003) (Fig. 5B) but not OFC (t = −1.25, P = 0.23). Moreover, we
found that subject-specific overall hunger ratings significantly
predicted value-related vmPFC–amygdala connectivity (r = 0.58,
P = 0.02) (Fig. 5C), showing that this connection is directly re-
lated to the general motivational value of the odors.
The finding that instantiation of general predictive value in

vmPFC is not related to identity-specific value information in
OFC aligns with observations that vmPFC and OFC reside
in largely dissociable anatomical networks (27–29). In turn, we
tested whether identity-specific value signals are functionally
connected with olfactory cortices where odor identity is repre-
sented (30, 31). Using an SVM-based variation of PPI to identify
brain regions where value-related OFC connectivity patterns
differed between sweet vs. savory predicted odors, we found
significant OFC connections with anterior piriform cortex (−27,
14, −20; t test, n = 15; t = 4.08, pFWE = 0.014) (Fig. 5D) and ACC
(−3, 47, 16; t = 6.20, pFWE = 0.011) (Fig. 5E) but not vmPFC (t =
0.87, P = 0.40) or amygdala (t = 1.83, P = 0.10). These findings
imply that identity-specific value signals in OFC are related to
odor identity information in piriform cortex, a mechanism in
keeping with the known bidirectional projections between these
two brain areas (32).

Discussion
To make adaptive choices, nervous systems must encode infor-
mation about the identity of expected outcomes. Despite the
importance of outcome-specific responding for adaptive and
goal-directed behavior, most imaging research has focused on
characterizing abstract value representations, while disregarding
the specific identity of the reward (with a few exceptions) (4, 9).
Here, we used appetizing food odors as rewards in an fMRI
paradigm of human classical conditioning, enabling us to disso-
ciate reward value and identity and examine neural repre-
sentations of identity-specific value using pattern-based fMRI

analyses. We found that identity-specific value codes in OFC
and identity-general value codes in vmPFC were embedded in
parallel functional networks involving primary sensory and limbic
regions, respectively.
By applying SVM classifiers to value-related fMRI activity

patterns associated with distinct reward identities (i.e., savory
and sweet food odors), we found robust identity-specific value
coding in a central/lateral region of the OFC. Although these
results are seemingly at odds with the widely held idea that OFC
signals a common currency for value or effect (3, 5, 8), one
cannot claim equivalency in the strength of evidence between the
failure to find a distributed general value signal using pattern-
based fMRI and the finding of single-unit evidence for a com-
mon value code in monkey OFC (3). In fact, failure to detect
such a code in fMRI does not preclude its existence at the single-
unit level in either human or monkey OFC.
Nevertheless, our results indicate that predictive representa-

tions in the OFC conjointly signal both the identity and the value
of the expected outcome in a unified neural code. At the level of
single neurons, such a coding scheme could be implemented by
units signaling both value and identity or an interaction between
the two. Intriguingly, such neurons have recently been identified
in the rat OFC (12), and it is likely that other features of
the expected outcome, such as reward location, behavioral re-
sponses, and other valueless features, are also embedded in these
complex predictive codes (3, 33–35). Thus, our findings indicate
that predictive outcome representations in the OFC are much
more complex than previously thought, and provide critical em-
pirical support for recent proposals suggesting that the OFC
plays a fundamental role in model-based behavior by tracking
the contents and states of the environment and task structure
(36, 37). Interestingly, identity-specific value signals were also
identified in ACC and hippocampus. The potential functional
relevance of these regions in predictive reward coding is de-
scribed in SI Discussion.
In contrast to the identity-specific value codes found in OFC,

identity-general value codes were found in the vmPFC. Here,
patterns of fMRI activity coding for the predicted value of a
sweet odor could be used to reliably classify the predicted value
of a savory odor, and vice versa. This finding echoes and extends
recent evidence showing that vmPFC activity patterns generalize
across different reward categories (4, 5, 7), such as food items,
merchandizing gimmicks, and leisure activities. In these studies,
classifiers were trained on exemplars (i.e., different items) as-
sociated with different values in one category and could be used
to predict the value of exemplars in another category. In con-
trast, here we manipulated value while keeping identity constant
to show that value codes generalize across specific identities
within a category, thereby providing a rigorous test for identity-
independent value codes. However, rather than constituting a
ubiquitous feature of the ventral prefrontal cortex, such coding
was restricted to a localized portion of vmPFC. This observation
is in line with previous reports (8), and accords with the idea that
vmPFC is specialized to perform online evaluations of and com-
parisons between currently expected outcomes (38, 39). Arguably, if
vmPFC neurons are, indeed, able to flexibly code the value of a
wide range of stimuli, only a limited number of such neurons would
be needed, which may account for why general value representa-
tions were confined to a relatively small area of vmPFC.
Strikingly, identity-specific and -general value signals revealed

in this study were not serially related to each other but showed
functional connections with a nonoverlapping set of brain re-
gions. Whereas general value signals in vmPFC were linked to
processing in the amygdala, identity-specific value codes in OFC
were related to piriform cortex, an olfactory sensory region
corresponding to the sensory modality of the rewards used in
this study. This mechanism may highlight a fundamental princi-
ple, whereby identity-based sensory features of a reward are
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extracted from sensory-relevant cortical areas, and then further
processed in OFC to support the formation of identity-specific
value codes. Supporting this model, lateral and posterior areas of
OFC have been shown to receive direct projections from a wide
range of sensory cortices (27, 40).
The embedding of identity-specific and -general value repre-

sentations in parallel pathways alludes to a functional inde-
pendence of these two signals. A general value code linked with
the amygdala would support comparisons between different re-
wards (8) and map onto relatively coarse actions, such as approach
or avoidance behaviors (2, 25). In contrast, an identity-specific
pathway tied to sensory cortical representations would support
more nuanced and differentiated behaviors (36), and thereby al-
low that prey is eaten and mates are courted—a differentiation
that cannot be made using general value signals alone. Indeed, an
inability to generate identity-specific value signals in OFC would
have profound consequences for consummatory responses and
lead directly to the types of pathological behaviors, including
disinhibition, hyperorality, and hypersexuality, that are observed in
patients with frontotemporal dementia or structural damage to
limbic brain networks (41, 42). Our findings thus offer unique
mechanistic insights and testable predictions that may help target
future therapeutic interventions for these disorders.

Materials and Methods
Subjects. Fifteen healthy subjects (seven males ages 23–29 years old, mean ±
SD = 25.53 ± 2.33 years old) with normal or corrected-to-normal vision
participated in the study. The study took place at the Northwestern Uni-
versity Feinberg School of Medicine according to protocols approved by the
local Institutional Review Board.

Experimental Design. Subjects came into the laboratory on 3 consecutive days.
On the first day, odor stimuli were selected, and subjects were trained on the
conditioning task. On the second and third days, subjects performed 6 runs of
an outcome prediction task inside the MRI scanner, resulting in a total of 12
runs. On all days, subjects were asked to fast for 6 h before the experiment.
According to ratings of hunger provided on a scale from 1 (not at all hungry)
to 10 (very hungry), subjects were sufficiently hungry on each day of testing
(day 1 = 8 ± 0.28; day 2 = 7.8 ± 0.28; day 3 = 8 ± 0.22) and had not eaten for
∼6 h before the experiment (day 1 = 6.4 ± 0.95 h; day 2 = 5.9 ± 0.64 h; day
3 = 6.9 ± 1.03 h). SI Materials and Methods discusses details on odor stimulus
selection, classical conditioning, and outcome prediction task as well as fMRI
data acquisition and preprocessing.

Odor Stimuli and Application. Pleasant food odors (provided by International
Flavors and Fragrances) were used as rewards in the experiment. Specifically,
we used four sweet odors (cupcake, strawberry, dulce de leche, and wa-
termelon) and four savory food odors (pizza, sautéed onions, potato chips,
and barbecue sauce). For all experimental and rating tasks inside and out-
side the MRI scanner, odors were delivered directly to the nose of the subject
using a custom-built, computer-controlled olfactometer according to pre-
viously established methods (20). The olfactometer was equipped with two in-
dependent mass flow controllers (Alicat) capable of precisely diluting up to 10
odorants with odorless air, such that we could change odor concentration (and
thus, pleasantness) from trial to trial while maintaining perceptual identity.

Multivoxel Pattern Analysis for Identity-Specific Value Codes. To identify
identity-specific value codes, we used a searchlight decoding approach (43–46)
that allows information mapping without potentially biasing voxel selection
(47) combined with linear kernel SVM. In a first step, we estimated a general
linear model (GLM) on the realigned functional imaging data from each subject
and each scanning run. The purpose of this GLM was to estimate the voxelwise
value-related responses for each of two odors. Subsequently, these value-
related responses were used to search for brain regions that differentially code
the value of the two odors. The GLM contained four regressors (duration of
1.5 s) coding for the onset of the CS predicting sweet or savory odors separately
for each CS set (regressor 1: CS from set I predicting high and low sweet; re-
gressor 2: CS from set I predicting high and low savory; regressor 3: CS from set
II predicting high and low sweet; regressor 4: CS from set II predicting high and
low savory). These four onset regressors were each parametrically modulated
by the value of the odor predicted by the CS (coded as 1 and −1 for high and
low values). The GLM also included four regressors coding for the onsets of four

different odor outcomes (sniffs to low and high sweet odors and low and high
savory odors). All 12 regressors (4 CS onset, 4 CS value, and 4 US) were con-
volved with a canonical hemodynamic response function. The six movement
parameters as well as two regressors accounting for parametric trial by trial
fluctuations in sniff amplitude and sniff duration were included as nuisance
regressors of no interest. The four parametric regressors from this GLM are
orthogonalized to the corresponding CS onset regressor and thus, account for
value-related variance separately for each odor identity and visual stimulus set
(CS set I sweet, CS set I savory, CS set II sweet, and CS set II savory) independent
of the variance related to expected odor identity. Thus, the voxelwise param-
eter estimates from these parametric regressors represent the value-related
responses for the two different odors as signaled by two different stimulus sets.

In a second step, the parameter estimates from the parametric value re-
gressors were used as input for an SVM decoding analysis to search for
identity-specific value representations while controlling for the visual effects
of the CS. The SVM was performed using the LIBSVM implementation (www.
csie.ntu.edu.tw/∼cjlin/libsvm/) with a linear kernel and a preselected cost
parameter of c = 0.01. For each searchlight (all voxels within a radius of four
voxels surrounding the central voxel) (45), we trained an SVM to classify
value-related responses from sweet vs. savory expected odors as signaled by
CS from set I and tested the SVM on value-related responses from sweet vs.
savory expected odors as signaled by CS from set II. The procedure was re-
peated in the opposite direction by training on the sweet vs. savory value-
related responses in CS set II and testing on sweet vs. savory value-related
responses in CS set I. We also trained on sweet set I vs. savory set II and tested
on sweet set II vs. savory set I and vice versa (reported results are averaged
across all four directions). Importantly, decoding in this analysis can only be
above chance if different multivoxel response patterns code the predicted value
of the sweet and savory odor identities. Moreover, because we trained and
tested the SVM on data from different CS sets, the results of this decoding
analysis are independent of the visual features of the predictive CS.

Multivoxel Pattern Analysis for Identity-Independent Value Codes. To identify
identity-independent value codes, we first set up a GLM to estimate response
patterns for each unique CS. The GLM contained eight regressors for the
onsets (duration of 1.5 s) of eight different CS (two sets of CS predicting low
and high sweet odors and two sets of CS predicting low and high savory
odors). The GLM also included four regressors coding for the onsets of four
different odoroutcomes and thenuisance regressors (sniff parameters andhead
motion) described above. The voxelwise parameter estimates of the first eight
regressors represent the response amplitudes to each of eight CS predicting low
and high sweet and savory food odors in each of 12 scanning runs.

In a second step, these eight parameter estimates were used as input for an
SVM cross-identity decoding analysis to search for identity-independent value
representations. For each searchlight, we trained an SVM on response patterns
from CS predicting high vs. low sweet odors, and prediction accuracy was
obtained by testing the SVM on response patterns from CS predicting high vs.
low savory odors. The procedure was repeated in the opposite direction by
training on the predicted value of the savory odors and testing on the predicted
value of the sweet odors (reported results are averaged across both directions).
All other parameters of the searchlight and the SVM were identical to the
decoding analysis for identity-specific values described above. Importantly, this
cross-identity decoding accuracy can only be significantly above chance if the
samemultivoxel responsepatterns code thepredicted value of the sweet and the
savory odors. Because sweet and savory odors are predicted by different visual
CS, the results are independent of the visual features of the predictive CS.

PPI Analysis. We computed the general value-related functional connectivity
of the vmPFC using a PPI analysis as implemented in the gPPI toolbox (48).
Specifically, for each subject we estimated a PPI model with CS predicting
high vs. low value as the psychological factor and seed activation of the
vmPFC cluster identified in the identity-independent decoding analysis (de-
fined at P < 0.001) as the physiological factor. The model also included re-
gressors coding for the onsets of the CS and US, as well as the sniff and head
motion parameters (described above) as nuisance variables of no interest.
Individual contrast images for general value-dependent (high vs. low) con-
nectivity changes with the vmPFC were computed and subjected to voxel-
wise group-level analyses.

Multivoxel PPI Analysis. To reveal brain regions that show identity-specific
value-related connectivity with the OFC, a pattern-based connectivity
method was required, because no univariate differences in value-related
connectivity were expected between the two predicted odor identities
(because of the distributed nature of odor coding) (30, 31). Accordingly, we
combined the PPI analysis with the multivoxel pattern analysis described
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above (Multivoxel Pattern Analysis for Identity-Specific Value Codes). In a
first step, for each scanning run, we estimated a PPI model for value-related
connectivity as described above (PPI Analysis) using the OFC (cluster defined
at P < 0.001 from the identity-specific decoding analysis) as a seed region. In
this model, however, we computed the value-related connectivity estimates
separately for CS predicting sweet and savory odors. In a second step, we
used these identity-specific value-related connectivity estimates as input to a
leave one run out cross-validated SVM searchlight analysis to identify brain
regions that show different value-related connectivity patterns with the OFC
for sweet vs. savory predicted odors. Specifically, instead of using the value-
related response amplitudes for different predicted odors to train the SVM
(as used in the identity-specific decoding analysis described above), here, we
used the voxelwise sweet and savory value-related OFC connectivity esti-
mates to search for brain regions where predicted odor identity could be
decoded based on OFC connectivity patterns.

Group-Level Analysis. To test for significant identity-specific and -general value
coding, we performed group-level analyses (n = 15 subjects) by using voxelwise
one-sample t tests on smoothed accuracy maps (6-mm FWHM). All group-level
analyses were carried out in an explicit anatomical mask comprising the OFC,
ACC, insula, anterior and posterior piriform cortex, amygdala, and hippocampus.

To control for relative value differences between odor identities across
subjects, all group-level analyses included the value imbalance score (SI
Materials and Methods) for CS and US ratings as covariates of no interest.
The same tests were used to identify regions showing functional connec-
tivity with the vmPFC and OFC. We applied a statistical threshold of P < 0.05
corrected for multiple comparisons (FWE). Based on a priori hypotheses
regarding encoding of identity-general and -specific values, correction was
performed for the following anatomical regions of interest from the au-
tomated anatomical labeling atlas: OFC (superior orbital gyrus, middle or-
bital gyrus, and inferior orbital gyrus), vmPFC (gyrus rectus and medial
orbital gyrus), ACC, anterior piriform cortex, amygdala, and hippocam-
pus. For display purposes, all imaging results are presented at P < 0.001
(uncorrected).
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